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ABSTRACT
This article describes artistic and algorithmic strategies in making
fabric origami to create fabric art with tactile sensitivities and expres-
sive shadow effects.
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1. Introduction

Surface texture in fashion design and textile art is often achieved through fabric manipu-
lation techniques such as gathering, shirring, pleating, smocking, or tucking. This article
describes how, as an artist/designer, I used mathematical algorithms to create surface tex-
ture patterns for fabric origami art using sewing, gathering, and pleating. The term ‘fabric
origami’ refers only to certain fabric manipulation techniques that alter the texture of the
original fabric to create a new fabric that is endowed with novel visual and tactile charac-
teristics. A variety of fabric materials can be used for fabric origami, including natural ones
such as cotton and silk, and material made from polyethylene by DuPont. Figure 1 shows
a large fabric origami of this material; the black design with circles on one side represents
the artwork as well as the sewing patterns while the textured fabric origami is on the other
side.

Through fabric origami it is my hope that the often-underappreciated precision,
patience, and techniques that go into its production can be seen as a metaphor for the
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Figure 1. Step into theCloud, 300’x30’, Tyvek14, 2023. Installation viewsaspart of an international exhi-
bition at Museum for Papirkunst, Blokhus Denmark. The fabric origami sewing pattern is incorporated
into the black dotted design printed on one side of the Tyvek sheet. The other side shows the textured
fabric origami.

unacknowledged skills and labour often associated with women’s labour. The transforma-
tive process of turning a flat piece of fabric into a complex textured form can symbolize
women’s transformation and empowerment.

2. Fabric manipulation and fabric origami tessellation

Fabric manipulation can be defined as the modification of a basic fabric to create a new
innovative fabric surface that is more visually and tactilely different than the original
(Burns, 2022). Of all the fabric manipulation techniques, systematic folding, such as gath-
ering and pleating, is similar to origami manipulations in that it reduces the original size
of the fabric by certain proportions. Pleating and gathering involves measured folds on a
piece of fabric. This can be done with simple pleats or with complex tessellations (Wolff,
1996). Folds can be pressed with iron or treated with heat to create sharp edges or be left
unpressed to allow the fabric to project and curve naturally. Today, fabric gathering and
pleating are often done by machine and treated with heat, making pleats more accessible
to a large population. Many contemporary fashion designers, including Germaine Émelie
Krebs and Issey Miyake have used pleated fabric in their collections (Burns, 2022). Pleat-
ing fabric is sometime called orinuno – in Japanese, Orimeans fold and Unomeans fabric.
Artist Reiko Sudo’s origami corrugation pleats and other more complicated pleated tessel-
lations can be seen in scarves collected by major museums around the world (Museum,
2013).

A tessellation (or tiling) is traditionally described as the filling of a flat surface by one
or more shapes (called tiles) so that there are no gaps or overlaps. Origami tessellations
begin with a sheet (usually of paper) that is folded according to a crease pattern to produce
a pattern of shapes that resembles a tiling by tiles. An origami tessellation is often a design
in which both the crease pattern and the folded structures use continuous and repeated
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elements. Origami tessellations were first developed by Yoshihide Momotani (Momotani,
1984) and Shuzo Fujimoto (Fujimoto & Nishiwaki, 1982), and their mathematical prop-
erties were first studied by Toshikazu Kawasaki and Masaaki Yoshida in the context of
crystallographic symmetry (Kawasaki & Yoshida, 1988). In the 1960s and 70s, Ronald
Resch and David Huffman each created many interesting origami tessellations. Recently,
many origami artists, including Chris Palmer (Palmer, 1997), Eric Gjerde (Gjerde, 2009),
Yuko Nishimura, Goran Konjevod, Ray Schamp, Alessandro Beber (Lang, 2018), Helena
Verrill (Verrill, 1998), and others have pushed the art form to new heights, establishing
a new abstract origami genre that is distinctive from the traditional figurative origami.
This new interest in origami tessellations has led artists, mathematicians, and computer
scientists within the origami community to search for new origami tessellation designs
by studying mathematical tiling and developing computer algorithms. For example, Alex
Bateman’s computer program Tess allows users to create origami tessellations based on
mathematical tilings such as Archimedean tilings (Bateman, 2007). More recently, Robert
Lang has discussed mathematical concepts underpinning origami tessellations and ways
to design origami tessellations (Lang, 2018).

Origami tessellations are typically folded using paper imprinted with a complex crease
pattern made of alternating mountain and valley folds. To fold an origami tessellation, one
needs to gently fold and unfold creases in order to collapse and flatten individual creases
– a process that may take hours to complete. There is always a risk of the paper failing or
being torn due to this demanding process. Certain tessellations, such as the ones involving
twists, are very difficult to fold in paper. To overcome the problem, some artists have started
to use fabric. Origami artists Jefferey Rustzky and Chris Palmer have used this technique
to create a wide array of tessellation designs, called ‘Shadowfolds,’ to be used as decorative
textiles (Rutzky & Palmer, 2011).

3. Introduction to fabric origami

According to Jefferey and Chris Palmer, the techniques for making fabric origami are very
simple (Rutzky & Palmer, 2011). First, a sewing pattern is transferred to a piece of fabric,
then the points are sewn together to allow the fabric to gather. Finally, the fabric is flattened
to form origami tessellation designs such as pleats and/or twists.

Figure 1 shows a simple example of the process of making a fabric origami tessellation.
A sewing pattern in fabric origami is a diagram that shows points and lines used to guide
the sewing process. The points show where the fabric needs to be stitched and the lines
between the points indicate how these points need to be tied together. The sewing pattern
can be transferred onto the fabric either by hand or inkjet printing.

In Figure 1(a), the sewing pattern is transferred to a piece of muslin fabric using ink and
pencil to create dots that are then connected with triangles or lines. To sew the fabric, a
small fine needle is threaded with a single strand of thread that matches the fabric’s color.
One of the dots that are connected by a triangle is picked up by the needle and the thread is
fastened by a dead knot tied at that location. The next two dots in the triangle are pierced
by picking up a few threads in the fabric (Figure 2(b)) and then the thread ends are pulled
together to gather all the dots to one point. The thread is then fastened (knotted) at that
point so the thread in the needle doesn’t move (Figure 2(c)). Without cutting the thread,
the needle is moved to one of the dots in an adjacent triangle or line while leaving enough



204 J. WU

Figure 2. A simple example showing the fabric origami process.

thread length between the tied knot and the next triangle or line. The same process is
repeated until all triangles or lines are tied together on the same side of the fabric. If there
is any fabric protruding on this side, it is simply tucked to the other side (Figure 2(d)).
The threads between the tied points are then cut. This side of the fabric will lay flat on the
plane due to the design of the sewing pattern (generating sewing patterns is discussed in
section 4). Turning the fabric over, the gathered fabric on the other side is nearly ready to
be pleated into twists or flaps (2(e)). The gathered fabric is lightly pinched with fingers to
form a clean fold and then gently pressed down to form a pleat. This process is continued
until all the gathered fabric is pleated flat. There are multiple ways to form the pleats (how
to form the pleats is discussed in section 5).

While Figure 2 shows an example of fabric origami in which all the ties are made on one
side of the fabric to allow the fabric to be pleated on the other side, one can also sew and
tie the fabric on either side to allow the fabric to be pleated on both sides. Figure 3 shows
two such examples that are created based on the same sewing pattern. Figure 3a shows an
example in which all the points of each of the rhombi are sewn and tied on one side of
the fabric while the fabric is gathered and pleated on the other side. Figure 3b shows an
example in which the top and bottom rows of rhombi are sewn and tied on one side of the
fabric, and the middle row of rhombi are sewn and tied on the other side of the fabric. By
allowing the fabric to gather and be pleated on both sides, interesting origami tessellations
can be generated.

4. Tessellation grafting technique for generating sewing patterns

The key to interesting fabric origami designs is to create the sewing patterns. Tessellation
grafting is a method I devised to generate sewing patterns for fabric origami tessellations.
In what follows, a tessellation will refer to an edge-to-edge tiling by polygons (regular or
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Figure 3. Two different examples of pleating using the same sewing pattern.

irregular). Edge-to-edge means that each edge of a polygon tile meets exactly one edge of
another (and so each vertex of the tiling must also be a vertex of each of the polygon tiles
that meet there). In addition, all tessellations discussed here will be finite, consisting of a
finite number of polygon tiles, since all will be considered to produce patterns for origami
fabric art pieces.

To ‘graft’ such a tessellation, one starts by figuratively cutting apart adjacent polygons
that share an edge and then expanding the space between them to allow rectangles and/or
parallelograms to join the previously adjacent polygons. In addition, new polygons are
inserted around the vertices of the original tessellation. If a vertex in the original tessel-
lation has a valence of three, the polygon connecting the now separated vertices must be a
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Figure 4. An example showing tessellation grafting process.

triangle. If a vertex in the original tessellation has a valence of four, the polygon connect-
ing the new vertices must be a quadrilateral. In general, for vertices that are n-valent, the
inserting polygons must be n-gons.

Figure 4(a) shows a patch of the rhombille tessellation, made up of congruent 60°−120°
rhombi, and the expansion of two vertex figures of the tessellation. To produce the expan-
sions, the rhombi are scaled (dilated) at their geometric centre by an arbitrary scale factor
of 0.5 (Figure 4(b)). (We will discuss the relationship between the scale factor and the sizes
of fabric origami later in an example in section 7.) After the scaled rhombus tiles are spaced
apart (Figure 4(c)), lines are drawnbetween their previously adjacent vertices to create rect-
angles that are shaded in gray. These lines also create new polygons in the space around
the vertices of the original tessellation – a regular hexagon replaces each degree-6 vertex,
and an equilateral triangle replaces each degree-3 vertex (Figure 4(d)).

This process produces the grafted tessellation pattern in Figure 5 for a fabric origami. In
Figure 5(a), and in subsequent figures in this article, polygons in the original tessellation
are drawn in dashed lines, and solid lines are new lines drawn in the grafted tessellation.
The polygons shaded in gray are the rectangles (or parallelograms) inserted during the tes-
sellation grafting process. The sewing diagram in Figure 5(b) is the result of eliminating the
original rhombi and the inserted rectangles. To make the fabric origami from the sewing
pattern, the corners of each of the triangles are sewn together and the corners of each of
the hexagons are sewn together on the front side of the fabric, collapsing the triangles and
hexagons back to points and the rectangles back to lines. On the same front side, the fabric
is carefully pleated and flattened to create a new tessellation (Figure 5(c)). On the back side
of the sewn fabric the seams are now reflecting the original rhombille tiling (Figure 5(d)).

Figure 6 shows another example of a tessellation patch that consists of 45°−135 ° rhombi
and squares. The polygons in the original patch (Figure 6(a)) are scaled at a ratio of about
0.55 to add space between the rhombi and squares. Notice that the spaces between rhombi
are filled with congruent gray rectangles and the spaces between rhombi and squares are
filled with gray parallelograms (Figure 6(b)). Figure 6(c) shows the sewing pattern made
by eliminating the squares and rhombi. Figure 6(d) shows a sewn result in which sewing
is done only on one side of the fabric, and Figure 6(e) shows another sewn result in which
sewing is done on both sides of the fabric.
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Figure 5. A simple fabric origami example showing the grafted tessellation, its related sewing pattern,
and the sewn result.

Figure 6. Another simple fabric origami example showing the original tessellation, the grafted tessel-
lation, its related sewing pattern, and the sewn results.

So, one might ask, what kinds of grafted tessellations result in sewing patterns that can
be sewn and pleated flat for fabric origami? What is unique about the examples shown in
Figure 5 and Figure 6? How can the fabric be pleated? To understand these questions, the
crease patterns generated from the sewing patterns must be studied.

5. Pleating techniques and algorithms for finding flat-foldable pleating
patterns

To understand how to pleat fabric flatly, the topic of flat-foldability of crease patterns of
fabric origami must be studied first. The local flat-foldability at a single vertex has been
very well studied (Lang, 2018). Here we reiterate several important theorems regarding
this subject.
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• The Kawasaki-Justin Theorem: A crease pattern is locally flat-foldable if and only if the
number of crease lines connecting to a single inner vertex (a point where crease lines
meet) is even and the sums of alternating angles between the lines is 180° (Justin, 1986;
Kawasaki, 1989).

• The Maekawa-Justin Theorem: For any flat-foldable vertex, the difference between
the numbers of the mountain folds and the number of valley folds is two (Justin,
1994).

• The Big-Little-Big Angle Theorem (BLBA): For any flat-foldable vertex, the crease on
either side of any sector whose angle is smaller than those of its neighbours must have
opposite crease assignments (Lang, 2018).

In what follows, I will present a few algorithms for generating crease patterns from sewing
patterns in fabric origami. In all the crease patterns presented, the solid lines are used to
represent mountain folds, dashed and dotted lines are used to represent valley folds, and
the original sewing patterns are superimposed in lighter lines and noted with uppercase
letters. Unless otherwise noted, all the crease patterns presented satisfy the three theorems
noted above. I leave it to the reader to provide proofs in each case.

To sew a single line in fabric origami, its end points are sewn together on one side of
the fabric and the fabric is pleated and flattened on the other side. Pleats are created by
folding according to crease patterns. Given a sewing diagram of a single line AB, as in
Figure 7(a), the algorithm for generating the crease pattern is the following: Draw a per-
pendicular bisector of line AB. At either point A or point B, depending on which side the
fabric is pleated, draw a line that is parallel to the perpendicular bisector of line AB. Assign
the mountain or valley folds to the lines according to the way the fabric is pleated (folded
to the left or the right). To fix the pleat, an additional sewing line CD that is congruent and
parallel to AB can be added so that AB and CD form a rectangle (Figure 7(b)). However,
a different sewing line CD can form a parallelogram with AB in which triangles ACB and
BCD are congruent isosceles triangles. The algorithm for this crease pattern is as follows
(Figure 7(c)): let C be on the perpendicular bisector of AB and draw another line going
through point B and perpendicular to line AB. Draw CD perpendicular to this new line, so
that CD is congruent and parallel to AB. Draw lines between A and C, B and C, and B and
D. Then use the Maekawa-Justin Theorem and Big-Little-Big Angle Theorem to assign
mountain and valley folds for these lines. However, if line AB and line CD are sewn on
the opposite sides of the fabric, as shown in Figure 7(d), the resulting pleat has the same
appearance as in Figure 7(a) and 7(b). It is worth noting that if the area formed by sewing
lines AB and CD is not a parallelogram and has no similar characteristics as the ones in
Figure 7, no known flat-foldable crease patterns can be found.

For sewing a single triangle in fabric origami, corners of the triangle are sewn to a point
on one side of the fabric and then the fabric is pleated and flattened on the other side. There
are several ways to pleat and flatten the fabric of a single triangle fabric origami, each of
which corresponds to a crease pattern. Given a sewing diagram of a single triangle ABC
with circumcentre O, the algorithm for generating the crease pattern shown in Figure 8
is the following: Draw perpendicular bisectors OD, OE, and OF of sides CB, BA, and AC,
respectively. At point A, draw line AA′′ so that AA′′ is parallel to line OF. Let line AA′′
intersect line OE at point A′. Repeat this for point B with line BB′′ and point B′ and point
C with line CC′′ and point C′. Draw lines A′C′, C′B′, and B′A′ (Figure 8(a)). Finally, erase
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Figure 7. Crease patterns for sewing lines to fix pleats, and related sewn examples.

Figure 8. Crease Patterns from sewing and then pleating a single triangle.

lines OA′, OB′, and OC′ (Figure 8(b)). Vertices A′, B′, and C′ satisfy the Kawasaki-Justin
Theorem. Use the Maekawa-Justin Theorem and Big-Little-Big Angle Theorem to assign
the mountain and valley folds at vertices A′, B′, and C′. The photo in Figure 8(b) shows
the folded form. Figure 8(c) shows an alternative crease pattern generated from sewing
triangle ABC and its resulting folded form.

Since using the algorithm described for Figure 8 will result in three pleats in which
mountain creases and valley creases are parallel to each other, and there are two ways to
fold each pair of pleats (the valley folds can be on either side of the mountain folds), the
total possible crease patterns will be 23. In addition to the two crease patterns shown in
Figure 8, Figure 9(a)–(f) shows the other six possible crease patterns and their respective
folded forms. It should be noted these crease patterns are not new; Robert Lang called these
patterns close-back twists and he generated them using a very different technique (Lang,
2018).

The crease patterns in Figures 8 and 9 share a common feature in that there are parallel
pairs of mountain and valley creases. Due to this quality, these crease patterns can be tiled
to generate flat-foldable tessellations. Since crease patterns can interact with each other in
folded forms, determining the global flat-foldability of these tessellations is very difficult
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Figure 9. Six alternative crease patterns from a single triangle and their respective folded forms.

Figure 10. An example of generating a crease pattern from six sewing triangles.

and beyond the topic of this paper. However, since there are eight possible flat-foldable
crease patterns that can be assigned to each sewing triangle, it is possible for an artist to
pleat and flatten a piece of fabric origami so that the pleats can be organized in a visually
consistent way without intersecting with each other. Figure 10 shows an example of one of
the many possible crease patterns generated from a sewing pattern of six triangles in fabric
origami. Figure 10(a) shows the sewing pattern and Figure 10(b) the grafted tessellation
with rectangles inserted between the triangles. Figure 10(c) shows one of the crease pat-
terns that is a combination of sewing triangles and sewing lines (as in Figures 7 and 8), and
Figure 10(d) its resulting folded form. The artist chose the pleating patterns based on both
aesthetic and technical considerations.

Though the parallelism found in pairs of mountain and valley folds might be a good
feature for creating tessellated crease patterns as shown in Figure 10, the parallelism is
not a necessary condition for local flat-foldability for sewing one triangle. Given a sewing
diagramof a single triangleABCwith an arbitrary interior pointO, an alternative algorithm
for generating a crease pattern from a sewing pattern is the following: Find circumcentres
A′, B′, C′ for trianglesAOC,AOB, andBOC respectively. Connect pointsA andA′ and then
extend to create line AA′′. Repeat this process with point B and B′, and C and C′ to create
lines BB′′ and CC′′. Draw the perpendicular bisector EB′ of edge AB, DC′ of edge BC, and
FA′ of edge CA (Figure 11(a)). Erase lines OA, OB, and OC. Vertices A′, B′, and C′ satisfy
the Kawasaki-Justin Theorem. Use theMaekawa-Justin Theorem and Big-Little-Big Angle
Theorem to assign themountain and valley folds at vertices A′, B′, and C′. Figure 11(b) and
11(c) show the resulting crease pattern and the folded form. Since pointO is arbitrary, there
are infinite possibilities for flat-foldable crease patterns generated using this algorithm.
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Figure 11. A crease pattern from sewing a single triangle.

Figure 12. A grafted tessellation and a crease pattern from sewing a patch of rhombi tiles.

While the crease patterns generated using the algorithm in Figure 11 might not be
useful in creating triangular tessellations, the algorithm is useful for generating crease pat-
terns from other sewing patterns such as the fabric origami example shown in Figure 3(b).
Figure 12(a) shows its grafted tessellationwith the 60°−120° rhombiABCD.Notice that the
grey shaded spaces are also 60°−120° rhombi, which are parallelogramsmade of two equi-
lateral triangles. Figure 12(b) shows the crease pattern for the fabric origami in Figure 3(b),
in which the alternative rows of rhombi are sewn on alternative sides of the fabric.
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Figure 13. A grafted tessellation, a new tessellation by eliminating the space in its sewing pattern, and
a composition of this new tessellation and its original tessellation.

The above examples illustrate that for grafted tessellations to produce sewing patterns
that can be sewn and pleated flat, the inserted polygons between the edges of original
adjacent polygons must be either rectangles or parallelograms that are made of two con-
gruent isosceles triangles. So, what kind of tessellation can be grafted using the technique
shown in Figure 4? The technique used in Figure 4 can’t be applied to many other tes-
sellations. Given the grafted tessellation in Figure 5(a) (redrawn as Figure 13(a)), a new
tessellation (Figure 13(b)) that is the Archimedean tiling (3.6.3.6) of equilateral triangles
and regular hexagons can be generated by eliminating the rhombi and bringing together
the edges of the triangles and hexagons, or by eliminating the space in the sewing diagram
in Figure 5(b). In Figure 13(c) the original rhombille tessellation has been overlaid with
the (3.6.3.6) Archimedean tiling. It can be clearly observed that there is a direct relation-
ship between them: each vertex of degree n in the rhombille tiling is at the centre of an
n-gon in the Archimedean tiling, and the edges in the (3.6.3.6) tiling emanating from a
vertex are perpendicular to the edges of the polygon in the Archimedean tessellation that
surrounds that vertex. The two tessellations are duals. One might then ask: Given any tes-
sellation, is there always a ‘dual’ tessellation inwhich corresponding edges have a consistent
relationship, such as perpendicularity?

6. Primary and dual relationship in tessellation grafting

A given tessellation that we will call primary has vertices, edges, and tiles, and these can be
understood as vertices, edges, and faces of a general plane graph. We denote its number of
vertices by V, its number of edges by E, and its number of faces by F. An edge that belongs
to only one face is a border edge, and we denote the number of border edges as Eb. An
interior vertex is one that does not meet a border edge; we denote the number of interior
vertices as Vi. The dual tessellation (or graph) can be understood as an interior dual graph
that consists of V´ vertices, E´ edges, and F´ faces and has a vertex for every face of the
primary graph (V´ = F), an edge for every non-border edge of the primary graph (E´ =
E – Eb), and a face for every interior vertex of the primary graph (F´ = Vi). In addition,
the edges of the dual are perpendicular or parallel to the edges of the primary graph.



JOURNAL OF MATHEMATICS AND THE ARTS 213

Figure 14. A process of generating an asymmetrical sewing pattern for fabric origami based on Chris
Palmer’s Star Octagram. Figures 14(a) and (b) are enlarged for legibility.

According to Lang (Lang, 2018), James Clerk Maxwell (1831-79) found that the possi-
bility of a primary graph having dual graph (which he called a reciprocal figure) depends
on this difference: 2F – (E – Eb+ 3). If the difference is 0, there is exactly one solution for
the dual graph. If it is greater than zero, there is more than one solution, and if less than
zero, no solution is possible unless for very special conditions.

To generate a grafted tessellation and the corresponding sewing pattern for fabric
origami from a given tessellation, we can use Maxwell’s condition to determine if a dual
tessellation is possible. For example, a StarOctagram, shown in dashed lines in Figure 14(a)
and demonstrated in (Rutzky & Palmer, 2011) has F = 28, E – Eb = 48, and therefore, 2F
– (E – Eb+ 3) = 5. By Maxwell’s condition, there are an infinite number of solutions for
the dual graphs of the Star Octagram.

The algorithm for generating a sewing pattern froma StarOctagram (Figure 14(a)) is the
following: Choose an arbitrary quadrilateral of the Star Octagram graph such as polygon
HZAI and place a point A′ at an arbitrary location within it. Draw lines A′ B′ and A′ P′ of
arbitrary lengths so that they are perpendicular to lines ZA, and IH. Draw lines A′I′ and
B′I′ so that they are perpendicular to lines IA and AJ and meet at point I′. Repeat these
steps until the dual graph is completed with 28 vertices and 48 edges, and each edge of
the dual graph is perpendicular to an edge of the Star Octagram (Figure 14(b)). Next, a
sewing pattern will be generated using the tessellation grafting technique. Cut along all
edges of the Star Octagram and separate quads IHZA, AZBJ, and AJVI. Insert rectangles
with the same width as the edge of triangle A′B′I′. Triangle A′B′I′ is formed by the edges of
the inserted rectangles (Figure 14(c)). Repeat the same process with all the 28 quadrilateral
faces of the StarOctagram.Delete all the original quadrilaterals and the rectangles to obtain
the sewing diagram (Figure 14(d)). This sewing diagram is different from Chris Palmer’s
sewing diagram in (Rutzky & Palmer, 2011) since it is asymmetric.

Since there are an infinite number of dual graphs of the Star Octagram, a symmetric
designmight be chosen to aesthetically reflect its Islamic-inspired 8-fold symmetric nature.
Figure 15 shows two different symmetrical alternatives of fabric origami sewing patterns by
grafting the tessellation differently. In each of the alternatives, the original Star Octagram
tessellation and its dual graph, the grafted tessellation, the sewing pattern, and the sewn
fabric origami are shown from left to right. Notice the slight differences in the final fabric
origami pattern.
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Figure 15. Two alternatives of Star Octagram fabric origami. Two figures on the left are enlarged for
legibility.

7. Grafting voronoi tessellations

AVoronoi diagram (tessellation) is created by a scattered set S of points in the plane where
each point P in S is surrounded by a polygonal region consisting of all points in the plane
closer to P than to any of the other points in S. If a point P in S is joined to a neighbour-
ing point Q, then all points equidistant from P and Q lie on the perpendicular bisector of
the segment PQ. So the edges of the polygons in the Voronoi diagram are made up of seg-
ments of perpendicular bisectors of segments joining neighbouring points. The graph of
the segments joining neighbouring points is called the Delaunay triangulation.

Figure 16 shows a Voronoi diagram in dashed outline with the Delaunay triangulation
in solid outline superimposed. Note the Maxwell Condition is not satisfied as 2F – (E –
Eb+ 3) = – 1. However, the edges of the Delaunay triangulation correspond orthogonally
one to one with the edges of the Voronoi diagram, therefore, producing a desired dual
tessellation in a particular condition. As a result, it can be used in tessellation grafting for
fabric origami.

Figure 17 shows an example of fabric origami based on a Voronoi tessellation.
Figure 17(a) shows the Voronoi tessellation (in dashed lines), and Figure 17(b) shows the
Voronoi with its dualDelaunay triangulation (in solid lines) embedded. Figure 17(b) shows
the grafted tessellation and Figure 17(c) shows the sewing pattern. Figure 17(e) and 17(f)
show the front and the back sides of the sewn fabric origami based on the sewing pat-
tern 17(d). On the back side of the sewn fabric the seams of the fabric reflect the original
Voronoi pattern. The front side of the fabric is carefully pleated and flattened to create a
new tessellation.

Since the perpendicular bisectors of any triangle meet at one point, one can find the
reciprocal figure of any triangular mesh, a Voronoi tessellation all of whose vertices are
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Figure 16. A Voronoi diagram and its dual.

Figure 17. (a) A Voronoi tessellation, (b) with its Delaunay triangulation, (c) its grafted tessellation,
(d) its sewing pattern and (e) and (f ) fabric origami. Figure 17(a) is enlarged for legibility.

3-valent and in which corresponding lines are perpendicular bisectors of the edges of the
mesh. Figure 18 shows an example of a triangular tessellation and its reciprocal figure, a
heptakis heptagonal tiling, in which there are two hexagons and one heptagon at each ver-
tex. This is based on amapping of a (7.6.6) tiling in the hyperbolic plane into the Euclidean
plane using a Poincaré mapping. The triangle tessellations are in solid line while the hep-
tagonal/hexagonal tiles are in dashed line. Figure 18(a) shows the two reciprocal graphs
together. Figure 18(b) shows the grafted tessellation, and Figure 18(c) shows the sewing
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Figure 18. A triangular tessellation together with its Voronoi diagram, its grafted tessellation, sewing
pattern and fabric origami. Figure 18(a) is enlarged for legibility.

pattern. Both Figure 18(b) and18(c) are altered from the original tessellation in Figure 18(a)
by combining the seven triangles in the centre into a heptagon for aesthetic reasons. Fig-
ures 18(d)–(f) show the front, the back, and the detail of the sewn fabric origami based on
the sewing pattern in Figure 18(c).

There is a simple algorithm to graft a Voronoi tessellation, since each of its cells (polygon
tiles) is defined by a single point. When each of Voronoi cells is scaled consistently from its
defining point, the spaces created between the cells are rectangles and triangles, producing
the same result as grafting a Voronoi tessellation. The relationship between the size of the
original fabric and the finished fabric origami when working with Voronoi tessellations is
also very clear. Given a Voronoi diagram as shown in Figure 19(a), if each of the Voronoi
cells is scaled from its defining point using a scale factor of 0.5 to create the grafted tessel-
lation, the linear dimensions of the finished fabric origami will be 0.5 of the original fabric
(Figure 19(b)). Figure 19(c) and (d) show that the linear dimensions of the finished fabric
origami will be 65 and 85 percent of the original fabric if the Voronoi cells are scaled using
scale factors of 0.65 and 0.85 respectively.

8. Two case studies for fabric origami artworks

What is themathematical and algorithmic strategy an artist can use to come upwith sewing
patterns using the tessellation grafting technique for fabric origami? How do artists start
to create fabric origami based on conceptual inspirations? I will present two case studies to
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Figure 19. The relationship between the original fabric size and the finished fabric origami.

Figure 20. Dawn, 33”x19”, Muslin Cotton, 2022. Artist Jiangmei Wu.

demonstrate how I create fabric origami artworks. The first piece is entitled ‘Dawn,’ a fabric
origami art with watercolor added to bring attention to the folded design. The second piece
is entitled ‘Kallos,’ a wearable fabric origami artwork.

The concept for ‘Dawn’ was inspired by a logarithmic spiral that is expressed through
the density and scale of the folded patterns of a fabric origami tessellation and the subtle
changes of the watercolor hues (Figure 20). To create this artwork, I started with a simple
logarithmic spiral (Figure 21(a)) then overlaid a triangle mesh, adjusting and refining it so
that the triangles get smaller the closer they are to the origin of the spiral (Figure 21(b)).
The technique is based on a simple algorithm used for mesh refinement and coarsening to
adaptively represent terrains (Suárez & Plaza, 2008). To add aesthetic interest, I distorted
the mesh in certain areas to provide some visual contrast. A Voronoi tessellation was then
generated from the trianglemesh (Figure 21(c)). This Voronoi tessellationwas then grafted
by inserting each of the corresponding triangles at each of the vertices (Figure 21(d)). A
sewing pattern for fabric origami was obtained by removing all the inserted polygons in
the grafted tessellation. After the sewing pattern was transferred to the fabric, the points of
each triangle were stitched together on one side of the fabric. On the other side of the fabric,
the gatherings of the fabric were then pressed flat to create the folding patterns. Once the
fabric was pleated, watercolor was then applied to the fabric.
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Figure 21. Process of creating ‘Dawn’.

Figure 22. Kallos, width 60”, height 30”, Muslin Cotton, 2023. Artist Jiangmei Wu. Modelled by Hiroko
Hanahuma.

‘Kallos’ is a wearable fabric origami artwork. Kallos is a Greek word for beauty
(Figure 22). The work pays homage to natural folds and folds of the worlds – how vari-
ous cultures use folds, pleats, wraps, and drapes in clothing (for example, in contemporary
fashion AlexanderMcQeen’s Oyster dress).Kallos explores the connections between folds,
body, material, and movement. As a wearable wrap made from multiple small folds,
Kallos embraces the volume and depth of the folds, and the natural silhouettes of the folded
material as it drapes over the body. It provides a sensual feel and appearance for the wearer.
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Figure 23. Design process for Kallos.

Thewearer’s body glides through the world, separated only by this second skin of folds and
pleats.

To create the undulating landscape-like design, I started by drawing a point cloud in
a computer program (Figure 23(a)). This undulating design took into consideration con-
trasting patterns of the wrap and how the patterns look as the fabric wraps and drapes
around the body. The point cloudwas then used to generate theVoronoi tessellation, which
was subsequently used to generate tessellation grafting patterns for sewing (Figure 23(b)).
This sewing pattern was then transferred to the back side of the fabric that was about 120
in. by 60 in. (Figure 23(c)). After sewing over two thousand triangles on the back side of the
fabric, the front side of the fabric was gathered systematically (Figure 23(d)), thus reducing
the fabric to about 60 in. by 30 in.. The fabric was then carefully pleated and hot ironed.
To make pleating and folding more manageable, I wet the fabric slightly, using a technique
similar to wet folding.

9. Conclusion

In this article I have discussed the processes and techniques of how I create fabric origami.
I have also demonstrated a few examples of algorithms that are used to generate sewing
patterns for fabric origami and flat-foldable crease patterns from sewing patterns. The
tessellation grafting technique focuses on a specific relationship, namely, that correspond-
ing edges of the original tessellation and its dual are perpendicular. Can we consider other
types of reciprocal relationship such as parallelism? In addition to the Voronoi diagram
and its dual, what other particular types of duals include tessellations with vertices that are
not 3-valent, but 4, 5, or 6-valent?
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The process of making fabric origami can be highly technical and time-consuming. By
adding a dimension of mathematical complexity and technical skills into what is tradi-
tionally viewed as a ‘women’s craft,’ I hope to continue to create, and encourage others to
create, more fabric origami. My goal is to help blur the boundaries between high art and
low art, between the domestic and the public spheres, and between traditionally perceived
male and female roles.
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